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The average trajectories and fluctuations around them resulting from an ensem- 
ble of noisy, nonlinear maps are analyzed. The bifurcation diagram for the 
average value obtained from the computer simulation of noisy maps ensemble is 
discussed first. Then a deterministic average equation of motion describing in an 
approximate way the time evolution of the average value and of the variance is 
analyzed numerically. This equation predicts the existence of the bifurcation gap 
and of the exceptional attractors for special initial points. The scaling properties 
of the average value and of the variance are obtained with the help of this 
equation. 
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1. I N T R O D U C T I O N  

The influence of external noise on systems governed by nonlinear 
dynamical laws has recently received much attention/1 7l One of the basic 
features of nonlinear systems is their transition to chaotic state as the con- 
trol parameter is varied. Therefore it is interesting to understand from dif- 
ferent points of view how this transition is influenced by the presence of 
noise. The attemps in this direction are usually based on analysis of a single 
stochastic equation into which noise is introduced either in an additive or 
in a multiplicative (parametric) form. In this way the existence of the bifur- 
cation gap was predicted. This means that if in a noise-free case the trans- 

1 Sektion Physik, Universit~it Miinchen, 8000 M/inchen 2, Theresienstr. 37, Federal Republic 
of Germany. 

2 On leave from Institute for Theoretical Physics, Warsaw University, 00-681 Warsaw, Hoka 
69, Poland. 

349 

0022-4715/86/'0400-0349505.00/0 �9 1986 Plenum Publishing Corporation 



350 Napibrkowski and Zaus 

ition to chaos goes via an infinite sequence of period doublings ~8'9) then in 
the noisy case the chaos sets in after a finite number of period doublings. 
This number is a decreasing function of the noise strength. In other words 
the noise blurs the fine details of the bifurcation diagram and makes only a 
finite number of period doublings observable; the noise strength is a 
relevant scaling field. The transition to chaos was found to be shifted to 
smaller values of the control parameter as compared to the noiseless case; 
it was located by analyzing the Liapunov exponent--as in the noiseless 
c a s e .  

The present approach is different. The average dynamics of noisy maps 
are studied and quantities averaged over noise histories are analyzed. The 
reason for this approach is the following. The period-doubling transitions 
have been observed in many experimental systems (6'1~a3) and usually the 
data are interpreted with the help of simple, nonlinear maps. Then it is 
natural to include noise in this description�9 On the other hand the 
experimentally observed properties of a system are independent of the 
actual time sequence of random perturbations and this is the reason for 
studying the average dynamics. The analysis is based on a one-dimensional 
model with discrete dynamics of the form: 

x o + ,  = g(x. , )  + ~. (1) 

where the variable xn takes values in an interval J and F(x) is unimodal 
and depends on single control parameter/~. The discussion is restricted to 
the typical case F(x)= 1 - # x  2 with J =  [-- 1, 1 ] and # e [0, 2]. We assume 
that the random impulses ~n are independently distributed with (n = 0 and 
~n~m-~- 0 - 2 .  (~nm, where the parameter 0- takes the role of the noise strength. 

The value of the variable x at time n calculated from Eq. (1) depends 
on the starting point Xo and on the values of noise at all times up to 
n - 1 :  Xn=Xn(Xo; ~0,'", ~-~)" According to our program we shall analyze 
the long-time behavior (n-~ oo) of the average trajectories 
{2n(x0)[n =0,  1, 2,...} starting at different initial points; 2n denotes the 
average of x~(xo; ~o,..., ~ 1) over ~o,..., ~ , -  1. Similarly we shall analyze the 

�9 . . - -  - - -  - - 2  
2 2 fluctuations around these average values, 1.e., the variance A,=x,-xn as a 

function of initial point Xo, control parameter/~, noise strength 0-, and time 
n. The paper is organized as follows. In Section 2 we present the results of 
computer simulation of an ensemble of noisy maps (1) and discuss the 
behavior of the average value and of the standard deviation as functions of 
the control parameter. Then a deterministic average equation of motion is 
derived. This equation describes in an approximate way the time evolution 
of the average value and of the variance. It has many interesting and new 
properties as compared to the noiseless case, i.e., xn+~ =F(x,,). They are 
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discussed in Section 3. In Section 4 the scaling properties of the average 
value and of the variance are derived on the basis of the average equation 
of motion. The results are summarized in Section 5. 

2. C O M P U T E R  S I M U L A T I O N  

In this section we discuss the results of computer simulation of an 
ensemble consisting of 10,000 noisy maps (1). Each variable ~n is dis- 
tributed according to a pseudouniform distribution with the average value 
<~n> =0  and variance <~2> = a2. The iteration of each noisy map--mem- 
ber of the ensemble--starts at the same initial point x0 and after each step 
of iteration the average value and the standard deviation are calculated. 
The iteration was performed 2200 times, which guaranteed (the exceptions 
are discussed below) the approach to equilibrium or, in other words, the 
location of the attractor. 

The bifurcation diagram for the average value <x~> (Fig. 1) differs 

1.0 

0.5 

-0..= 

i 

0 O.4 Q8 ZO 

Fig. 1. The bifurcation diagram for the average value ( x ~ >  obtained from the simulation 
for noise strength a = 10-3. Thin vertical lines denote the standard deviation from the average 
value for the corresponding p values. The shifted attractors resulting from the exceptional 
starting points are not displayed on this diagram. 
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from the corresponding bifurcation diagram in the noiseless case. First of 
all, it shows only periodic attractors; there is no chaotic behavior. In the 
# regime corresponding to the periodic attractors of the noiseless case, the 
average attractors are also periodic and undergo the period-doubling trans- 
itions. The number of period doublings is finite and depends on the noise 
strength a. This number increases with decreasing a and in the limit a = 0 
an infinite bifurcation sequence is recovered. For/~ in the chaotic regime of 
the noiseless map again only periodic average attractors are present, and 
upon increasing # the inverse sequence of discontinuous mergings of 
branches of the periodic attractors is observed; for large enough /~ an 
attractor with periodicity one is present. Thus the bifurcation diagram 
shows certain symmetry with respect to small and large ~ values. 

It should be stressed, however, that for fixed values of # and a the 
location of the periodic attractor depends significantly on the starting point 
Xo. This is in contrast with the noiseless case where all points Xo (except for 
a set of measure zero) lead to the same attractor. (14) In the average case the 
overwhelming majority of starting points--we call them the ordinary 
starting points--lead to an attractor whose location coincides in the 
periodic # regime with the location of the corresponding noiseless attractor. 
The remaining initial points, which are of small but nonzero measure (they 
are called the exceptional starting points), lead also to periodic attractors 
which are shifted with respect to the noiseless attractors. The situation for 
# = 1.36 and a = 10 -3 is shown on Figs. 2a, b. 

The occurrence of the shifted attractors may be understood as follows: 
Consider the noiseless map. In the period-q regime the value of its nth 
iterate xn(xo) with n~> 1 will be in the vicinity of one of the branches x ~ ,  
1 ~<j~< q, of the period-q attractor. As x0 is varied we encounter points 
x~(/x) where xn(xo) jumps from x~(x~-~)~-x~ to x~(x~+~)~=x~,k kCj. In 
the noisy map (1) the effect of r is similar to random initial values from an 
interval of size a. Hence, if we start to iterate Eq. (1) at some Xo around x~, 
the average value (xn)(Xo) will be somewhere between x~  and x~.k In the 
simulation we find indeed that the intervals of exceptional starting points 
leading to shifted attractors are centered at the points x~(/x). 

The noise-induced averaging over trajectories starting at neighboring 
initial points is also responsible for the appearance of periodic attractors at 
those # values at which in the noiseless case there are chaotic attractors 
consisting of separate bands. In this # regime each branch of the periodic 
average attractor results from the noise-induced averaging over the 
corresponding band of the noiseless chaotic attractor. This mechanism is 
also responsible for the discontinuous mergings of the periodic average 
attractors around these #values at which in the noiseless case the 
phenomenon of band mergings is observed. The fact that for # values very 
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Fig. 2. The location of the average attractors {x~ } as a function of the starting point x0 for 
# =  1.36 and a =  10-3: (a) 0~<x0~0.25 , (b) 0.550~Xo~<0.575. The vertical lines denote the 
values of the standard deviation from the average value. The points x~ are denoted by 
markers. 
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close to Pc only periodic attractors with finite and not arbitrarily large 
periodicity are observed is also due to averaging over neighboring branches 
(#</~c) or bands (#>/~c) which are separated by less then o- in the 
noiseless case. The bifurcation diagram for the average value reflects the 
existence of periodic windows within the chaotic regime of the noiseless 
map. (14) Though for reasons of clarity these windows are not displayed on 
Fig. 1, one finds for the relevant # values average attractors with the 
appropriate window periodicity; the shifted attractors are also present in 
the window. 

A characteristic property by which the average bifurcation diagram 
differs from the noiseless one is the location of the period-doubing trans- 
itions. In the average case this transition is shifted toward higher # values 
as compared to the noiseless case. However, the precise numerical location 
of the period-doubling transition is hardly possible due to the critical slow- 
ing down which enlarges (up to infinity) the number of iterations necessary 
to reach equilibrium around those special # points. Also, due to the critical 
slowing down one is not able to determine numerically whether the period 
doubling happens continuously (as in the noiseless case) or discontinuously 
(see the next section). For this reason,  on Fig. 1 we leave this undecided. 

Finally, Fig. 1 displays the behavior of the standard deviation as a 
function of kt. For ordinary starting points the standard deviation remains 
small (of order a) for # < ~tc(a). The only exceptions in this ~t regime are 
the points of the period-doubling transitions where the standard deviation 
shows local, finite maxima. (5~ It is, however, not possible to display them 
on the scale of Fig. 1. For # > #c(o-) the standard deviation does not remain 
small in the long-time limit; this long-time limit starts growing with 
increasing #. We see that for large enough # values the standard deviation 
is of order one. The critical value of the control parameter/~c(~) tends t o / ~  
for ~ ~ 0; for ~r r 0 pc(cr) < #c. For the exceptional starting points the stan- 
dard deviation does not remain small even for # < #~(o-) (Figs. 2a, b). This 
fact is not astonishing if one recalls the mechanism producing the shifted 
attractors. Thus because of the magnitude of the standard deviation the 
average value alone does not give a good characterization of the average 
dynamics neither for # > #c(a) nor for the exceptional starting points. 

3. AVERAGE EQUATION OF MOTION 

In this section we derive a deterministic average equation of motion 
which describes in an approximate way the time evolution of the average 
value and of the variance. The starting point is the noisy map (1) and we 
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assume that the noise distribution is characterized by the single parameter  
a. After averaging both sides of (1) over the noise distribution one gets: 

2~ +~ = F(2~ + A~) = F(s + 0.5' F"" A 2 (2) 

where A, -= x ,  - ~, and 2% = x0. Similarly 

An+, =F(x , ) -2n+~ + ~ , = _ F ' ( f , ) . A , + ( , + 0 . 5 . F " .  ( A 2 - A ~ )  

and 
m 

d]  F , 2 ( : ~ , ) . A Z + ( 2 + 0 . 2 5 . F  "2- ( A ] -  2 ~ , - = A n ) - + 2 . F ( x , ) . A ~ . ( ~  + 1  n 

2 A 2 ..~ Ft , '  + F" 'F ' (2 , , ) 'An ' (An-  ,) . ( A ~ - A  2) ~. (3) 

Since it follows from causality that An" ft, = 0 for all n ~> 0 then 
m 

3 2 = F'2()cn) " 3 2 4- 0 -2 4- higher order moments  + 1  (4) 

Neglecting the higher order moments  in the small noise limit (~5) and 
introducing y~ - 0.5. F". A] one obtains the two-dimensional map 

2~+~ = F(s  + .f~ 
(5) 

f f n + l  = F t 2 ( - ~ n )  ' .~n At- 0 . 5 - F " '  a 2 

with the initial condition 20 = Xo, Yo = 0. 
Obviously, by putting 0- = 0 (which implies )~n = 0 for all n I> 0) one 

recovers the one-dimensional deterministic equation xn + 1 = F(xn). 
Equation (5) can be extended to cover also the case of the parametric 
(multiplicative) noise. By this we mean a situation in which the control 
parameter  # in Eq. (1) is replaced by a random variable #n = fi + r/n with 
fin = 0 and t /n07= "C2"(~nm . If for simplicity we assume that the parametric 
and additive noises are uncorrelated, (~r/m = 0, then in the limit 0- ~ 1, z ~ 1 
the average equation of motion takes again the form (5) with # replaced by 
fi and the noise strength 0- replaced by an effective noise strength 

~2 ~ 4 ~ 0 5  ( a 2 + ~  .x~j . Because ~n is a bounded quantity the effective noise 
strength is again small in the limit a ~ 1, r ~ 1. The analysis of this more 
general case gives the same results as the analysis of Eq. (5), and so we 
restrict our discussion to the additive case only, Eq. (5). 

The average equation of motion is approximate  and the 
approximation leading to it assumes that the variance ~( -37~)  remains 
small in the course of time. Numerical solutions of (5) fulfill this condition 
only for # values below a certain critical one; above it the long-time 
behavior of the solutions of (5) is characterized by large variance and so 
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the validity of this map breaks down (this fact could of course be 
anticipated on the basis of the simulation presented in section 2). However, 
from the mathematical point of view the average equation has many 
unusual properties which make its analysis interesting independently from 
the original motivation. (6) Below we discuss these properties and compare 
them with the results of simulation. 

The long-time behavior of the solutions of (5) depends on two 
parameters/~ and o and on the initial point Xo. Thus in order to classify the 
attractors of Eq. (5) one should use the five-dimensional space of variables 
#, 0, Xo, 2~ ,  )5 o .  In the following we shall look at certain sections of this 
space in order to discuss separately the dependence of 2~ and ) 5  on x0, #, 
and o. 

Basins of  A t t r a c t i o n  

We start with the dependence on Xo and discuss the basins of attrac- 
tion. We fix a (e.g., a = 10 -3 )  and take # in the range corresponding to the 
period-doubling regime of the noiseless map. In this regime the average 
attractors are also periodic and undergo period-doubling transitions. The 
set of starting points [ - 1 ,  1 ] is divided into subsegments in such a way 
that all points belonging to a given subsegment lead to the same 
attractor. (16) Division into different basins of attraction is shown on 
Figs. 3a, b which should be compared with analogous results from 
simulation, Figs. 2a, b. The attractors shown on this picture are numbered 
III, II', I' and just as in the simulation most of the starting points lead to 
the long-time behavior described by attractor III with period 4. Its location 
agrees up to order O(a 2) with the location of the corresponding attractor 
in the noise-free case, and for this reason we call it the ordinary attractor. 
The other two attractors, II' and I', have small but nonzero basins of 
attraction. We call them the exceptional attractors and according to map 
(5) they take the role of the shifted attractors from simulation. The division 
into basins of attraction depends on the values of ~ and o and becomes 
finer when # is increased toward #c at fixed o. On the other hand, when 
is kept fixed and o becomes smaller the basins of attraction for the excep- 
tional attractors shrink and their total length goes to zero in the limit 
o ~ 0 .  

The value of the standard deviation depends significantly on whether 
one considers the ordinary or the exceptional attractors. For  ordinary 
starting points the standard deviation remains small, of order o, in the 
course of time. For  the exceptional starting points the standard deviation 
remains finite, but grows in time up to order 1. As an example, Figs. 3a, b 
show the behavior of the standard deviation as function of Xo at fixed # 
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Fig. 3. The basins of attraction obtained from the map (5) for ff = 1.36 and ~ = 10-3: (a) 
0 ~< x 0 ~< 0.25, (b) 0.550 ~< xo ~< 0.575. Most  of the starting points lead to the ordinary period-4 
attractor III; the rest lead to the exceptional period-2 attractor II' and period-4 attractor I'. 
As on Fig. 2, the vertical lines denote the value of the s tandard deviation ca]culated from map  
(5). Markers  denote the points x~. 
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and o. The division of starting points into basins of attraction persists also 
in the #regime where both the ordinary and the exceptional attractors 
become chaotic (the transition to chaos as predicted by the map (5) is dis- 
cussed in the next section). This division depends again on both # and a 
and becomes less and less fine when we increase # at fixed a. Finally, 
for large enough # there exists only one basin of attraction leading to the 
unique chaotic attractor. 

Within the chaotic regime there are periodic windows located similarly 
to the noiseless case. At each periodic window there are both ordinary and 
exceptional attractors present, each of them having a different basin of 
attraction. There is, however, one important difference as compared to the 
situation shown on Figs. 3a, b. At a periodic window located at high 
#values the ordinary attractors are no longer obtained from the 
overwhelming majority of starting points. This change becomes obvious 
when one looks back at the mechanism producing the exceptional attrac- 
tors. The noiseless map at large # values is characterized by the existence of 
many points x~ and they are located close to each other; when # grows 
these points fill the J segment more and more densely. Since the basins of 
the exceptional attractors are centered just at points x;  nearly all the 
starting points for appropriately large # values and not too small noise 
strength o--lead to the exceptional attractors. 

The T rans i t ion  to  Chaos 

The schematic bifurcation diagram for noise strength o =  10 3 is 
shown in Fig. 4 where heavy lines denote the ordinary attractors 
I, II, III, IV and thin lines denote the exceptional attractors I', II', III'. We 
first discuss the exceptional attractors. As # increases the evolution of each 
of them is similar and as an example we concentrate on the exceptional 
attractor I'. It continues the ordinary attractor I and so initially has 
periodicity 1. When further increasing # it undergoes a period-quadrupling 
transition ~17) which is then followed by an infinite sequence of period 
doublings to chaos. Only the first of those period-doubling transitions is 
displayed on Fig. 4. The attractors II' and III' behave in the same way. 
Thus the exceptional attractors undergo the Feigenbaum scenario. (8'9) The 
Feigenbaum constant 6 calculated up to period 211 is ~ = 4.669. 

On the ordinary attractors the route to chaos is different. They 
undergo a finite number of discontinuous period-doubling transitions 
before the chaos sets in. These discontinuous period doublings are located 
at # values which are bigger than the corresponding values for the noiseless 
case (see Table I). As already remarked, the origin of the shift can be 
explained on the basis of the noisy equation (1) in a similar way as the 
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Fig. 4. S c h e m a t i c  b i fu r ca t i on  d i a g r a m  f r o m  m a p  (5) for  ~ =  10 3. The  o r d i n a r y  a t t r a c t o r s  

I IV a re  d i sp l ayed  in h e a v y  lines a n d  the  excep t iona l  a t t r a c t o r s  I '  I I I '  in th in  lines. 

origin of the exceptional attractors. Mathematically this discontinuous 
period doubling is caused by a mechanism similar to tangent 
bifurcation, (t8'19) (Fig. 6). After a finite number of discontinuous period 
doublings chaos sets in. The periodicity of the ordinary attractor becoming 
chaotic depends on noise strength and, for example, is equal to 8 for 
a = 1 0  - 3 ,  16 for a = 1 0  - 4 ,  32 for a = 10 5. The scenario for the onset of 
chaos can be best illustrated in the 237 plane of the two-dimensional map 
(5) and is as follows: First there is a Hopf bifurcation (2~ at which a 
periodic attractor becomes quasi-periodic. This means that in the ~37 plane 

Table I. Comparison Between Noiseless Case and Discontinuous Period 
Doublings for Different Noise Strengths 

o = 0 o = 10 4 (7 = 10 3 o" = 1 0 - 2  

P l ~  2 0 .7500 0.7501 0 .7514 0 .7655 

~ 2 ~ 4  1.2500 1.2504 1.2540 1.2981 
# 4 ~  8 1.3681 1.3688 1.3751 - -  

ff8~16 1.3940 1.3950 - -  - -  
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Fig. 5. The numerical bifurcation diagram from map (5) for ~r = 10 -3. In the subharmonic 
regime only the ordinary attractors are shown. In the window around ~t - 1.48 both ordinary 
and exceptional attractors are present but only the latter is shown. The inset contains the 
enlargement of the Hopf bifurcation, which for this noise strength takes place after three dis- 
continuous period doublings. 

a set of q points representing the period-q attractor turnes into a set of q 
closed curves representing the quasi-periodic attractor. On the bifurcation 
diagram (Figs. 4, 5) the Hopf bifurcation corresponds to the line broaden- 
ing of the ordinary attractor. Upon further increasing of # each of these q 
curves changes its shape (remaining a closed curve) until at certain # value 
it turns into a set of points. This is again a periodic solution which persists 
for some interval of # values until it turns again into a quasi-periodic 
solution; in the 237 plane it is again represented by a set of q closed curves. 

Fig. 6. The schematic tangent bifurcation responsible for the discontinuous period-doubling 
transition. On the vertical axis we plot the function of x, which zeroes represent the fixed 
points of the second iterate of map (5). This function is obtained by iterating map (5) once, 
equating ~"=~, -9"=-9, and eliminating the variable F. At ~ = g ~  (#1<#2<#3) the discon- 
tinuous period doubling takes place. 
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This sequence of transitions from quasi-periodic attractors to periodic 
and again to quasi-periodic as /, increases is repeated a number of times. 
Each time the periodic attractor has different periodicity but the quasi- 
periodic one always consists of q curves. Finally a periodic attractor turns 
into a chaotic a t t r a c t o r .  (21'22) 

In the 2)7 plane this corresponds to a set of points turning into a 
strange attractor consisting of q subsets. The above scenario for the trans- 
ition to chaos via the Hopf bifurcation is well illustrated by the behavior of 
the Liapunov exponent (16'23) as a function of #. The Liapunov exponent is 
negative on periodic attractors, zero on quasi-periodic attractors and 
positive on strange attractors (Fig. 7). The number of periodic windows in 
the quasi-periodic regime depends on the noise strength but qualitatively 
the above picture holds for any nonzero noise. As one can see from the 
bifurcation diagram, Fig. 4, the onset of chaos is shifted toward smaller 
values of # as compared to the noiseless case. 

On the chaotic side of the bifurcation diagram the phenomenon of dis- 
continuous band mergings is observed. Though on the numerical bifur- 
cation diagram, Fig. 5, the band mergings look similar to the noiseless 
case, a closer examination reveals that the details behind are quite different. 
In fact the band mergings proceed via crises (24'2s) and this is schematically 
displayed on Fig. 8. The unstable periodic orbit (dashed line) which is 
produced together with the ordinary attractor (heavy line) at the discon- 
tinuous bifurcation collides for larger # values with this ordinary attractor 
which has already turned chaotic; on Fig. 8 the unstable orbit III" collides 
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Fig. 7. The behavior of the Liapunov exponent as a function of/~ at the transition to chaos 
via the Hopf bifurcation for cr = 10 -2. 



362 Napibrkowski and Zaus 

Fig. 8. Schematic bifurcation diagram for a = t0-2 showing the disappearance and broaden- 
ing of chaotic attractors via crises. The dashed lines denote the unstable periodic orbits. 

with chaotic attractor III. As a result the chaotic ordinary attractor dis- 
appears and only the chaotic attractor II' remains; this is the narrow part 
of the bifurcation diagram. The above mechanism of chaotic attractor 
vanishing is called the external crisis. (24) For  slightly larger /~ values this 
remaining chaotic attractor suddenly broadens up (via internal crisis (24)) 
and continues until it collides again with another unstable orbit, II" on 
Fig. 8. This external crisis leads again to the disappearance of the chaotic 
attractor II' after which only the exceptional chaotic attractor I' remains. I' 
in turn undergoes internal crisis, causing its sudden broadening. For  
# values slightly larger than those corresponding to the external crises one 
observes also the phenomenon of transient chaos. (24) 

The bifurcation diagram for the variance, similarly to the average 
value, shows the transition to chaos. On the ordinary attractors the 
variance undergoes a finite number of discontinuous period doublings 
before chaos sets in via the Hopf bifurcation (Fig. 9). On the exceptional 
attractors one observes the Feigenbaum scenario preceded by the period 
quadrupling. For  those # values for which the average attractor consists of 
bands, the attractor for the variance also consists of bands. The lower limit 
of each variance band is located around zero. The upper limit which gives 
the maximum value of variance on a given band depends significantly on #. 
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Fig. 9. Bifurcation diagram for the variable ~ = - # - A ~  for o-=10 -3. Only on the 
ordinary attractors I IV in the periodic regime the variance remains small [O(a2)]. Due to 
the large scale of this picture it is not possible to display either the periodic structure of the 
attractors II IV or the local maxima around the period doublings. 

The upper limit is small (of order O(a2)) for # close to the location of the 
Hopf bifurcation and starts growing up to order 1 upon increasing #. In 
this sense the results from the map (5) agree with the predictions of the 
simulation, though of course in the simulation neither the average value 
nor the variance show any chaotic behavior. As already noted the variance 
is large on the exceptional attractors in the periodic regime; in the sense 
described above it also remains large on the chaotic exceptional attractors. 

The two-dimensional map (5) predicts the existence of the bifurcation 
gap. The finite number of period-doubling transitions predicted by this 
map agrees with the results of computer simulation. Also the shift of the 
period-doubling transitions as compared with the noiseless case is obtained 
from both the simulation and the map. However, beyond the Hopf  bifur- 
cation the validity of map (5) breaks down and for those # values where 
the simulation predicts periodic attractors map (5) gives chaotic attractors 
consisting of bands. On the other hand the order of magnitude of the stan- 
dard deviation as obtained from simulation agrees with the upper limit of 
the standard deviation calculated from map (5). 

4. S C A L I N G  P R O P E R T I E S  OF ~ .  A N D  A~ 

The average value 2n and the variance A~ show scaling properties c6) 
with respect to parameters #, a, starting point Xo, and time n. These 
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properties can be obtained either directly from the map (5) or from the 
path integral formulation of the problem. (31 The latter approach was used 
previously to discuss the scaling of the Liapunov exponent (2'3) and it is 
used first in the present context. In this method one starts from a 
generalized version of the noisy equation (1) 

x,,+~ : f~(x,,; m ) +  ~,,. gu(x~;m) (6) 

where 

fu(x; m)= (Fo Fo .." o F)(x) (7) 
m times 

and the function g~(x; m) guarantees that Eq. (6) does not change its form 
after one iteration. With the gaussian probability distribution for the noise, 
the average value is calculated from the following path integral (3/ 

2,(# ,a;Xo)= f Dx f Ds .x , ' exp lp~_o {iSp(Xp+~--f,(xp;m)) 

0 . 5 "  0 .2. 2.  } l  -- Sp g~(xp;m) J (8) 

where ~ Dx - f dxl ... f dxk.., and 5 Ds - (2n) ' I dso... (2n) ~ I dsk .... Using 
the saddle point method we integrate over every Sp with even p and every 
x v with odd p (n is assumed to be even) and then put the result back into 
the form (8) 

where 

 .( , ;Xo)=fDxfDs'x.'exp[ E 
odd p 

1 
0.5-~2 2. ~2 m)~/  -- "Sp g u ( X p _ l ;  (9) 

L ( x ; m ) = f u E f ~ ( x ; m ) ; m ] + O . 5 . a 2 . g 2 ( x ; m )  f ; E f , ( x , m ) ; m ]  (lOa) 

~,2(x; m)=  g~[f~(x; m); m] + g2(x; m).  f'F2[f~(x; m); m] (lOb) 

and now I Dx - ~ dx2... ~ dx2k.., and 5 Ds = (2n) -1 I as1... (2n) -1 5 ds2~+, .... 
The origin of the term proportional to a 2 on the RHS of Eq. (10a) is dif- 
ferent than the origin of the first term which results from the change of 
the integration variables in (8). The second term comes from expanding 
the argument of the exponential function exp[0.5 - i. arctan 
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S " 0 -2  ' 2 X "  " X g~( , m)- f ,  [fu( ; m); m] } ] (obtained from integration over s and 
x) in powers of 0-2 and keeping only terms linear in s. If in the limit 0- ~ 1 
one neglects the second term in (10a) in comparison with the first (as 
Shrayman et al./3) do), then rescales the variables 

S2k+l = - - O ~ S t k  X z k  = (-c~)-lx'k (11) 

and uses the scaling properties of functions f ,  and ~S 3'8) 

Lk(x; m ) =  (_(~)-1 'Lk  1( - ~ x ;  m) 
(12) 

~2k(x;m)=fl2.c~ 2.g2 k ~(-~x;rn)  

one finally obtains 

22,(#k+1, a; Xo)= ( - c 0  1.2n(#k, fla, -~Xo) (13) 

#k and #k i denote the points with corresponding stability for 2 ~ and 2 k-  1 

periodic attractors, respectively, and ~ = 2.503,/3 = 6.619. After introducing 
the variable ~ = #c -~ t  formula (13) takes the scaling form 

s a, Xo) = ( - ~ ) - l "  Xn(~6, aft, -C~Xo) (14) 

Similarly one obtains for the variance 

J22.(E, 0-, Xo)=C~ 2' J](e~, 0-/~; -C~Xo) (15) 

The scaling formulas (14, 15) can also be obtained from the two-dimen- 
sional map (5). In this case, however, this map has to be rederived for the 
case in which the noisy equation has the general form (6). The derivation 
goes exactly the same way as for Eq. (5), and one obtains 

"Zn+l = f .~( f . 'm)+O.5,  f "  (s "m). A] ' J P ~ k \  n ,  

(16) 
A 2 + l  r2 - . 2 = f uk(x~, m)" A, + g2k(s ~; m). a 2 

By iterating Eq. (16) once and retaining terms up to order 0-2 one obtains 

�9 . 2 2 " m )  m ) ; m ]  s 2 g,~( , ,  ' f~k[f,~(x~; 

+ 0.5.A~[f~,k[f~k(x,;m);m] 1 2  - "f~k(x~; m) 
t - t /  - -  . + f ~ [ f , ~ ( x ,  ; m); m] " f~ ( x , ,  m)] (17) 

A ~ +  ,2  2= f ~ [ f ~ ( i . ;  m); m] ,2 - . .f.~(x.,m).~ 
�9 2 ~ . , 2  - . + 0-2. {g~kEfpk(:?~, m); m] + g~k( n ,  m)" fu ,  Efu,(x,, m); m] } 
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We see that functions jT, and ~ defined in Eqs. (10a) and (10b) appear on 
the RHS of Eqs. (17), which can thus be rewritten as 

+2 = Lk( n; m) + 0.5. m)" 
(18) 

2 _ , 2  - . ~ 2  . f .  Z[n+2--?pk(Xn;m)''~ + 0-2 g#~( n, m) 

After making the same truncation in Eq. (10a) as previously and using the 
scaling properties (12), Eqs. (18) take the form 

-c~X,+2=f,k , ( -~X-;m)+0"5"f~k ~(-~2, ;m) 'c~ 'A 2 
(19) 

2 2  '2 . 2 0-2 f12. 2 ( . c~ A~+ 2 = f ~  ~ ( - c ~ x , , , m ) . o d ' d n +  . g~,k-~ - ~ x ~ ,  m)  

From comparing Eqs. (19) and (16) we see that the average value 2, and 
the variance A~ fulfill the scaling relations (14, 15). These scaling properties 
can be used to locate the borderline of the bifurcation gap. (26) 

The variance can be looked upon as the analog of the order parameter 
from the critical phenomena physics. We fix the parameter ~ at a value 
which corresponds in the noiseless case either to periodic attractor with 
periodicity k (e > 0) or to chaotic attractor consisting of k separate bands 
(~ < 0) and we consider the double limit: 

Zk(e) = lim lim A2.k(~, 0-; 0) 

(for simplicity we take Xo = 0). The value of this double limit is different for 
the periodic and chaotic case (26) 

( = 0  for ~>0  
Zk(S)~r for s < 0  

(20) 

It follows from the scaling relation (15) that the long-time limit of the 
variance A2(g, a) - A 2 (g ,  a; O) has the scaling form 

( e ' r  ~) ) ' r  a) (21) A2(,% 0-) : 0-2(In c~/ln fl). ~ k O'ln 8/ln ft. r a) 

where r are periodic functions ~bl(X+ln3)=r  ), r  
r Equation (21) implies the following asymptotic behavior of A2(0, a) 
in the limit a ~ 0 

A 2 ( 0 ,  0 - ) ~  0-2(1n cr 0.0.97 (22) 

Equations (20, 22) show that the variance behaves analogously to the 
order parameter from the critical phenomena while the noise strength 0. 
takes the role of the ordering field. 
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5. C O N C L U S I O N S  

The structure of attractors characterizing the long-time limit of the 
average dynamics is in many respects different from the corresponding 
noiseless case. The results of computer simulation show that the bifurcation 
diagram for the average value displays only periodic attractors with certain 
symmetry between large and small values of the control parameter. For a 
fixed value of noise strength a finite number of period-doubling transitions 
is observed after which an inverse process of mergings of the branches of 
the periodic attractors follows. However, the symmetry between the large 
and small values of the control parameter is broken if together with the 
average value also the standard deviation from the average value is 
analyzed. This standard deviation is small for lower # values and becomes 
large for higher # values. This property of standard deviation makes the 
problem of average dynamics difficult to describe analytically. The 
approximate two-dimensional map analyzed in this paper ceases to give the 
proper description of the average dynamics just at those # values where the 
inverse cascade of mergings starts. However, the interesting property of the 
two-dimensional map is that it predicts a finite number of period-doubling 
transitions. After that the branches of the periodic attractors start to form 
bands which then undergo the inverse cascade of discontinuous mergings. 
The number of bands obtained from the map for given # and ~ agrees with 
the number of branches of the periodic attractors from the simulation. 
Finally, we mention that inclusion of higher order terms in the average 
equation of motion does not bring new results. Higher order moments can 
be included via an iterative approximation which leads to a three-dimen- 
sional map. However, no significant change in the long-time behavior was 
found in comparison with the two-dimensional map discussed in the text. 

After this paper was finished, the authors were informed that a 
rigorous analysis of small random perturbation of the Feigenbaum map is 
given in Ref. 27. 
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